|
|
|
|
|
|
|
|
|
|
|
个人简历
1996年9月–2000年7月,合肥工业大学化工学院化工工艺专业学习,获(工学学士)学位;
2000年9月–2003年7月,合肥工业大学化工学院应用化学专业学习,获(工学硕士)学位;
2004年9月–2008年1月,合肥工业大学材料科学与工程学院材料学专业学习,获(工学博士)学位;
2008年5月–2011年12月,合肥工业大学从事博士后研究,博士后
2016年3月–2017年3月,澳大利亚科廷大学访学工作
历任助教、讲师(2005.12)、副教授(2010.12)。
主要研究领域、方向
硕士生招生专业:化学(学术型);材料与化工(专业型)
目前的研究方向:废水处理及资源化利用、碳基电催化剂的制备与应用
主讲本科生课程:无机化学;工科化学;基础化学实验I
主讲研究生课程:高等无机化学
研究成果(代表性成果)
(1)常温电催化湿式空气氧化技术高效处理有机废水
(2)硫化物同步回收单质硫和电能
目前承担科研项目
(1)国家自然科学基金面上项目“由硫化物同步回收单质硫和电能的机理分析和过程控制” (No.51378166)
(2)省自然科学基金面上项目“处理含硫废水的络合铁资源化新技术原理及应用” (No.1408085MB38)
(3)校级项目“基于微生物燃料电池技术的PAM降解产电过程研究”(No.2011HGQC1004)
(4)校级项目“低分子量聚丙烯酰胺的分散聚合研究”(No.GDBJ2008-038)
(5)企业委托项目“聚丙烯酰胺系列产品的开发和应用研究”(No.10-574)
(6)企业委托项目“高阻隔抗菌PE纳米复合包装薄膜研究”(No.13-094)
获奖及专利情况
专利:
发明专利12项
(1)一种氮掺杂石墨烯负载钴氧还原反应电催化剂的水热合成方法. CN106450354A.
(2)一种含硫化物废水的资源化处理方法. CN105776448A.
(3)一种提高脱硫过程中络合铁再生速率与产电效率的燃料电池运行工艺. CN 104766981B.
(4)一种肠衣-肝素加工废水的资源化处理方法. CN103923164B.
(5)一种低电压下氧气辅助阳极催化氧化降解水体中有机污染物的方法. CN107337262A.
(6)一种氮掺杂碳负载镍电Fenton催化剂的制备方法. CN106423276A.
(7)一种非均相电Fenton阴极材料的制备方法. CN103928689B.
(8)一种通过单室燃料电池处理含硫废水回收单质硫并联产电能的方法. CN102881961B.
(9)一种催化湿式空气氧化降解有机污染的复合电极材料及其应用方法CN112250159A
(10)一种功能化污泥基碳三维颗粒电极的制备及其应用CN112374583A
(11)一种自支撑MnOx/LSC三维复合电极的制备及其在矿化难降解有机污染物中的应用
(12)一种MnO/C阳极电催化剂的制备方法及其应用CN108808024A
著作论文(代表作)
[1]Self-supporting MnOx nanoparticles on loofah-sponge-derived carbon felt for electroassisted catalytic wet air oxidation of water contaminants, ACS EST Engg., 2021, 1, 173-182, Sun, M.; Liu, H.H.; Tao, X.F.; Zhai, L.F*, Wang, S*.
[2]A generalized kinetic model for electro-assisted catalytic wet air oxidation of triclosan on Ni@NiO/graphite electrode, Chem. Eng. Sci. 2020, 222, 115696, Sun, M.; Hong, X.H.; Tao, X.F.; Zhai, L.F*.
[3]Catalytic behaviors of manganese oxides in electro-assisted catalytic air oxidation reaction: Influence of structural properties, Appl. Surf. Sci., 2020, 511, 145536, Sun, M.; Fang, L.M.; Hong, X.H.; Zhang, F.; Zhai, L.F*, Wang, S*.
[4]Degradation of bisphenol A by electrocatalytic wet air oxidation process: Kinetic modeling, degradation pathway and performance assessment, Chem. Eng. J., 2020, 387, 124124, Sun, M.; Liu, H.H.; Zhang, Y.; Zhai, L.F*.
[5] Bioelectrochemical element conversion reactions towards generation of energy and value-added chemicals, Prog. Energ. Combust., 2020, 77, 100814, Sun, M.; Zhai, LF.; Mu, Y.*; Yu, HQ.*
[6] Electro-assisted catalytic wet air oxidation of organic pollutants on a MnO@C/GF anode under room condition, Appl. Catal. B-Environ., 2019, 256: 117822, Zhai, L.F.; Duan, M.F.; Qiao, M.X.; Sun, M.*, Wang, S*.
[7]Room-temperature air oxidation of organic pollutants via electrocatalysis by nanoscaled Co-CoO on graphite felt anode, Environ. Int., 2019, 131: 104977, Sun, M.; Zhang,Y.; Liu, H.H.; Zhang, F.; Zhai, L.F.*, Wang, S*.
[8]Excellent performance of electro-assisted catalytic wet air oxidation of refractory organic pollutants, Water Res., 2019, 158: 313-321, Sun, M.; Zhang, Y.; Kong, S.Y.; Zhai, L.F.*, Wang S*.
[9]Electro-activation of O2 on MnO2/graphite felt for efficient oxidation of water contaminants under room condition, Chemosphere, 2019, 234: 269-276, Sun, M.*; Fang, L.M.; Liu, J.Q.; Zhang, F.; Zhai, L.F*.
[10]Facile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction, Chem. Eng. Sci., 2019, 194, 45-53, Zhai, L.F.*; Kong, S.Y.; Zhang, H.; Tian, W.; Sun, M.; Sun, H., Wang, S*.
[11]Air oxidation of pollutants on cathodic nickel@nickel oxide/graphite felt under room condition, J. Clean. Prod., 2019, 224: 256-263, Zhai, L.F.*; Kong, S.Y.; Duan, M.F.; Sun, M*.
[12]Selective cleavage of C-O bond in diaryl ether contaminants via anodic oxidation. ACS Sustain, Chem. Eng., 2019, 7: 18414-18420, Zhai, L.F.; Duan, M.F.; Guo, H.Y.; Zhang, F.*; Sun, M*.
[13]Surface modification of graphite support as an effective strategy to enhance the electro-Fenton activity of Fe3O4/graphite composites in situ fabricated from acid mine drainage using an air-cathode fuel cell, ACS Sustain. Chem. Eng., 2019, 7: 8367-8374, Zhai, L.F.*; Sun, Y.M.; Guo, H.Y.; Sun, M*.
[14]Corrosion of graphite electrode in electrochemical advanced oxidation processes: Degradation protocol and environmental implication, Chem. Eng. J., 2018, 344, 410-418, Qiao, M.X.; Zhang, Y.; Zhai, L.F.*; Sun, M*.
[15]In situ fabrication of electro-Fenton catalyst from Fe2+ in acid mine drainage: influence of coexisting metal cations, ACS Sustain. Chem. Eng., 2018, 6 (11): 14154-14161, Sun, Y.M.; Zhai, L.F. *; Duan, M.F.; Sun, M*.
[16]Fabrication of Ni-Fe LDH/GF anode for enhanced Fe(III) regeneration in fuel cell-assisted chelated-iron dehydrosulfurization process, J. Chem. Technol. Biot., 2018, 93:80-87, Zhai, L.F.*; Mao, H.Z.; Sun, M*.
[17]Electrochemical oxide sulfide in an air-cathode fuel cell with manganese oxide/graphite felt composite as anode, Sep. Purif. Technol., 2018,197:47-53, Zhai, L.F.*; Wang, R.; Duan, M.F.; Sun, M*.
[18]Anodic oxidation-assisted O2 oxidation of phenol catalyzed by Fe3O4 at low voltage, Electrochim. Acta., 2018, 261:394-401, Lei, L.; Fang, L.M.; Zhai, L.F.*; Wang, R.; Sun, M*.
[19]Free-Radical Induced Chain Degradation of High-Molecular-Weight Polyacrylamide in a Heterogeneous Electro-Fenton System, ACS Sustain. Chem. Eng., 2017, 5 (9): 7832-7839, Sun M.*; Qiao, M.X.; Wang, J.; Zhai, L.F*.
[20]Solution pH Manipulates Sulfur and Electricity Recovery From Aqueous Sulfide in an Air-Cathode Fuel Cell, Clean-Soil Air Water, 2016, 44(9999): 1-6, Zhai, L.F.*; Wang, B.; Sun, M.
[21]Harvest and utilization of chemical energy in wastes by microbial fuel cells, Chem. Soc. Rev., 2016, 45, 2847-2870, Sun, M.; Zhai, L.F.; Li, W,W.; Yu, H. Q*.
[22]Understanding the Catalyst Regeneration Kinetics in the Chelated Iron Dehydrosulfurization Process: A Model in Terms of Fe(II) Speciation, Ind. Eng. Chem. Res., 2015, 54 (25): 6430-6437, Zhai, L.F.*; Hu, L.L.; Sun, M.
[23]Electricity-induced catalytic oxidation of RhB by O2 at a graphite anode, Electrochim. Acta. 2015, 158:314-320, Sun, M.*; Liu, Y.; Xiang, W.; Zhai, L.F.
[24]In-situ fabrication of supported iron oxides from synthetic acid mine drainage: High catalytic activities and good stabilities towards electro-Fenton reaction, Appl. Catal. B: Environ., 2015, 165:103-110, Sun, M.*; Ru, X.R.; Zhai, L.F.
[25]Bioelectricity-assisted partial degradation of linear polyacrylamide in a bioelectrochemical system, Appl. Microbiol. Biot., 2015, 99: 947-956, Cui, Y.Z.; Zhang, J.; Sun, M.*; Zhai, L.F.
[26]Manipulate an air-cathode fuel cell toward recovering highly active heterogeneous electro-Fenton catalyst from the Fe(II) in acid mine drainage, Miner. Eng., 2015, 84: 1-7, Sun, M.*; Wu, N.N.; Zhai, L.F.; Ru X.R.
[27]Iron-contamination-induced performance degradation of an iron-fed fuel cell, J. Power Sources, 2014, 248: 6-14, Sun, M.*; Song, W.; Zhai, L.F.; Tong, Z.H.
[28]Enhanced electricity generation from electrochemical oxidation of Fe(II) in an air-cathode fuel cell amended with chelating anions, Ind. Eng. Chem. Res., 2013, 52, 2234-2240, Zhai, L.F.; Tong, Z.H.; Sun, M.*; Song, W.; Jin S.; Harada, H.
[29]Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process, J. Hazard. Mater., 2013, 263: 643-649, Sun, M.*; Song, W.; Zhai, L. F.; Cui, Y. Z.
[30]Elucidating electro-oxidation kinetics of Fe(II) in the anode of air-cathode fuel cells from an Fe(II) speciation perspective, Chem. Eng. J., 2013, 228, 781-789, Sun, M.*; Song, W.; Zhai, L.F.; Ru, X.R.; Cui, Y.Z.
[31]Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: A kinetic model in terms of Fe(II) speciation, J. Phys. Chem. A., 2013, 117, 4627-4635, Song, W.; Zhai, L.F.; Cui, Y.Z.; Sun, M.*; Jiang, Y.
[32]An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process, Bioresource Technol., 2012, 121, 161-168, Zhai, L.F.; Sun, M.*; Song, W.; Wang, G.
[33]A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater, J. Hazard. Mater., 2012, 243, 350-356, Zhai, L.F.; Song, W.; Tong, Z.H.; Sun, M*.