邱龙臻 |
|
|
|
|
|
|
|
lzhqiu@hfut.edu.cn |
|
|
个人简历
2012至今,合肥工业大学,光电技术研究院,研究员
2009-2012,合肥工业大学,光电技术研究院,副研究员
2008-2009,美国加州大学洛杉矶分校,机械与航天工程系,博士后
2006-2008,韩国浦项工科大学,化学工程系,博士后
2001-2006,中国科学技术大学,高分子科学与工程系,研究生/理学博士,导师:瞿保钧教授
1997-2001, 中国科学技术大学,高分子科学与工程系,本科/理学学士
主要研究领域、方向
课题组从事光电材料及器件研究,主要包括(1)柔性/弹性电子技术(2)人工突触电子器件(3)印刷电子技术(4)有机传感器等。
研究成果(代表性成果)
主要从事有机光电材料及器件研究,以及有机半导体在薄膜晶体管、存储器等领域的应用。先后承担科技部973项目、国家自然科学基金、教育部新世纪优秀人才支持计划等研究课题。在Adv. Mater.、Nano Letters, Chem. Mater.、Macromolecules、Biosens.Bioelectron.等国内外主要学术期刊发表论文100多篇,授权专利十多项。
目前承担科研项目
1、有机场效应晶体管高性能化与功能化研究(1808085J03),安徽省杰出青年科学基金,2018.7-2021.6
2、高性能显示视窗玻璃的研制,临泉县-合工大政产学研产业创新引导项目,2020.1-2021.12
3、基于分子印迹半导体复合材料的有机晶体管及其化学传感性能研究(51573036),自然科学基金,2016.1-2019.12
4、高弹性半导体聚合物的制备及其在可延展电子中的应用(21174036),自然科学基金,2012.1-2015.12
5、喷墨打印聚合物共混物薄膜相分离行为及其在晶体管中的应用(51103034),自然科学基金,2012.1-2014.12
6、基于多相体系的新型显示材料及器件性能研究(2012CB723406),科技部973计划,2012.1-2014.12
7、喷墨打印制作有机半导体/绝缘聚合物共混物薄膜相形态的调控及其在有机薄膜晶体管中的应用,教育部留学回国人员科研启动经费,2012.1-2013.12
8、基于聚合物共混体系的一步法制备有机薄膜晶体管的研究(61040015),自然科学基金,2011.1-2011.12
9、应用聚合物共混物相分离喷墨印制有机薄膜晶体管的研究(20100111120006),高等学校博士点基金,2011.1-2013.12
10、紫外光刻微图案化OTFT半导体材料的制备与性能(11040606M146),安徽省自然科学基金,2011.1-2012.12
获奖及专利情况
(1)安徽省杰出青年基金获得者,2018年;
(2)教育部新世纪优秀人才支持计划,2012年;
专利:
授权发明专利12项.
著作论文(代表作)
[1] Y. F. Ding, Y. Yuan, N. Wu, X. H. Wang, G. B. Zhang, L. Z. Qiu, Intrinsically Stretchable n-Type Polymer Semiconductors through Side Chain Engineering.Macromolecules2021, 54, 18, 8849–8859
[2]X. Zhao, S. Y. Wei, X. H. Wang; L. Z. Qiu. A Novel Multilevel Nonvolatile Solar-Blind Deep Ultraviolet Photoelectric Memory Based on an Organic Field Effect Transistor.Advanced Optical Materials2021.
[3]F. S. Zhao, Y. Yuan, Y. F. Ding, Y. F. Wang, X. H. Wang, G. B. Zhang, X. D. Gu; L. Z. Qiu. Taming Charge Transport and Mechanical Properties of Conjugated Polymers with Linear Siloxane Side Chains.Macromolecules202154, 5440-5450.
[4]L. Z. Qiu, S. Y. Wei, H. S. Xu, Z. X. Zhang, Z. Y. Guo, X. G. Chen, S. Y. Liu, D. Wu; L. B. Luo. Ultrathin Polymer Nanofibrils for Solar-Blind Deep Ultraviolet Light Photodetectors Application.Nano Lett.202020, 644-651.
[5]Y. F. Ding, L. L. Jiang, Y. C. Du, S. Kim, X. H. Wang, H. B. Lu, G. B. Zhang, K. Cho; L. Z. Qiu. Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers.Chem. Commun.202056, 11867-11870.
[6]G. B. Zhang, Y. Zhao, B. Kang, S. Park, J. F. Ruan, H. B. Lu, L. Z. Qiu, Y. S. Ding; K. Cho. Fused Heptacyclic-Based Acceptor-Donor-Acceptor Small Molecules: N-Substitution toward High-Performance Solution-Processable Field-Effect Transistors.Chem. Mater.201931, 2027-2035.
[7]Y. C. Du, H. B. Yao, L. Galuska, F. Ge, X. H. Wang, H. B. Lu, G. B. Zhang, X. D. Gu; L. Z. Qiu. Side-Chain Engineering To Optimize the Charge Transport Properties of Isoindigo-Based Random Terpolymers for High-Performance Organic Field-Effect Transistors.Macromolecules201952, 4765-4775.
[8]L. Zhang, G. Wang, C. Xiong, L. Zheng, J. He, Y. Ding, H. Lu, G. Zhang, K. Cho; L. Qiu. Chirality detection of amino acid enantiomers by organic electrochemical transistor.Biosens. Bioelectron.2018105, 121-128.
[9]L. Zhang, G. Wang, D. Wu, C. Xiong, L. Zheng, Y. Ding, H. Lu, G. Zhang; L. Qiu. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid.Biosensors & Bioelectronics2018100, 235-241.
[10]F. F. Wang, Y. R. Dai, W. W. Wang, H. B. Lu, L. Z. Qiu, Y. S. Ding; G. B. Zhang. Incorporation of Heteroatoms in Conjugated Polymers Backbone toward Air-Stable, High-Performance n-Channel Unencapsulated Polymer Transistors.Chem. Mater.201830, 5451-5459.
[11]S. X. Ma, G. B. Zhang, F. F. Wang, Y. R. Dai, H. B. Lu, L. Z. Qiu, Y. S. Ding; K. Cho. Tuning the Energy Levels of Aza-Heterocycle-Based Polymers for Long-Term n-Channel Bottom-Gate/Top-Contact Polymer Transistors.Macromolecules201851, 5704-5712.
[12]Y. Liu, F. Wang, J. Chen, X. Wang, H. Lu, L. Qiu; G. Zhang. Improved Transistor Performance of Isoindigo-Based Conjugated Polymers by Chemically Blending Strongly Electron-Deficient Units with Low Content To Optimize Crystal Structure.Macromolecules201851, 370-378.
[13]M. Zhu, S. Lv, Q. Wang, G. Zhang, H. Lu; L. Qiu. Enhanced near-infrared photoresponse of organic phototransistors based on single-component donor-acceptor conjugated polymer nanowires.Nanoscale20168, 7738-7748.
[14]L. Z. Qiu, X. Wang, W. H. Lee, J. A. Lim, J. S. Kim, D. Kwak; K. Cho*. Organic Thin-Film Transistors Based on Blends of Poly(3-hexylthiophene) and Polystyrene with a Solubility-Induced Low Percolation Threshold.Chem. Mater.200921, 4380-4386.
[15]L. Z. Qiu, W. H. Lee, X. H. Wang, J. S. Kim, J. A. Lim, D. Kwak, S. Lee; K. Cho*. Organic Thin-film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer.Adv. Mater.200921, 1349-1353.
[16]L. Qiu, J. A. Lim, X. Wang, W. H. Lee, M. Hwang; K. Cho*. Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors.Adv. Mater.200820, 1141-1145.