• 其他栏目

    吴慕遥

    • 讲师
    • 教师拼音名称:wumuyao
    • 出生日期:1995-12-08
    • 入职时间:2022-12-27
    • 所在单位:车辆工程系
    • 学历:博士研究生毕业
    • 办公地点:安徽省合肥市屯溪路193号合肥工业大学格物楼515
    • 性别:男
    • 联系方式:18256580186
    • 学位:工学博士学位
    • 在职信息:在职
    • 毕业院校:中国科学技术大学
    • 学科:车辆工程
    • 2022-12-01曾获荣誉当选:博士研究生国家奖学金
    • 2022-05-30曾获荣誉当选:安徽省优秀毕业生
    • 2022-05-30曾获荣誉当选:中国科学技术大学优秀毕业生
    • 2019-12-09曾获荣誉当选:中科大-苏州工业园区奖学金

    访问量:

    开通时间:..

    最后更新时间:..

    Dual particle swarm optimization based data-driven state of health estimation method for lithium-ion battery

    点击次数:

    影响因子:9.4

    DOI码:10.1016/j.est.2022.105908

    发表刊物:Journal of Energy Storage

    关键字:Lithium-ion battery, State-of-health estimation, Particle swarm optimization, Extreme gradient boosting algorithm

    摘要:Accurate estimation of Li-ion battery state of health (SOH) is essential to ensure battery safety and vehicle operation. Here, this paper proposes a dual particle swarm optimization algorithm-extreme gradient boosting algorithm (DP-X) with the battery's charging voltage and incremental capacity (IC) data. First, the features are extracted from the voltage curve and the IC curve of each charging cycle through curve compression and interpolation. Then, this paper utilizes the PSO-XGBoost (P-X) algorithm to optimize the selected features and reduce the dimensionality of the features. Finally, the P-X algorithm was applied to combine with the optimized features to adjust the model's hyperparameters and estimate the SOH. Experimental results show that the maximum SOH estimation error of the dual P-X algorithm is less than 2 %.

    备注:中科院2区Top

    合写作者:Xiaojian Liu,Leichao Fang,Muyao Wu

    第一作者:Xingtao Liu

    论文类型:期刊论文

    通讯作者:Ji Wu

    论文编号:105908

    学科门类:工学

    文献类型:J

    卷号:56

    ISSN号:2352-152X

    是否译文:

    发表时间:2022-11-04

    收录刊物:SCI、EI

    发布期刊链接:https://www.sciencedirect.com/science/article/pii/S2352152X22018965


    Baidu
    map