• 其他栏目

    吴慕遥

    • 讲师
    • 教师拼音名称:wumuyao
    • 出生日期:1995-12-08
    • 入职时间:2022-12-27
    • 所在单位:车辆工程系
    • 学历:博士研究生毕业
    • 办公地点:安徽省合肥市屯溪路193号合肥工业大学格物楼515
    • 性别:男
    • 联系方式:18256580186
    • 学位:工学博士学位
    • 在职信息:在职
    • 毕业院校:中国科学技术大学
    • 学科:车辆工程
    • 2022-12-01曾获荣誉当选:博士研究生国家奖学金
    • 2022-05-30曾获荣誉当选:安徽省优秀毕业生
    • 2022-05-30曾获荣誉当选:中国科学技术大学优秀毕业生
    • 2019-12-09曾获荣誉当选:中科大-苏州工业园区奖学金

    访问量:

    开通时间:..

    最后更新时间:..

    State of charge estimation of Power lithium-ion battery based on an Affine Iterative Adaptive Extended Kalman Filter

    点击次数:

    影响因子:9.4

    DOI码:10.1016/j.est.2022.104472

    发表刊物:Journal of Energy Storage

    关键字:State of charge (SOC), Power lithium-ion battery, Online identification, Adaptive forgetting factor recursive augmented least squares (AFFRALS), Affine Iterative Adaptive Extended Kalman Filter (AIAEKF), Unknown SOC initial value

    摘要:State of charge (SOC) is a very important parameter for power lithium-ion battery in battery operation, but it cannot be measured directly, so it needs to be accurately estimationed. Considering the time-varying characteristics of the model parameters of the power lithium-ion battery, an online identification algorithm called Adaptive Forgetting Factor Recursive Augmented Least Squares (AFFRALS) is proposed. It can obtain a more accurate model compared with the offline method (fixed model parameters) by considering that the noise of power lithium-ion battery system is commonly non-Gaussian white noise in practice, which is different from the existing equivalent circuit models. Then, an Affine Iterative Adaptive Extended Kalman Filter (AIAEKF) method is proposed to deal with the non-Gaussian white noise and accelerate the convergence rate of the estimated results when the initial SOC value is wrong. Experiments demonstrate the effective of the online identification method as well as the SOC estimation method. This method shows a faster convergence rate and better SOC estimation performance than the traditional Extend Kalman Filter (EKF) method. The RMSE of the SOC estimation results is less than 0.023 except for 0 °C, which rarely occurs in practice.

    备注:中科院2区Top

    合写作者:Linlin Qin,Gang Wu,Yusha Huang,Chun Shi

    第一作者:Muyao Wu

    论文类型:期刊论文

    论文编号:104472

    学科门类:工学

    文献类型:J

    卷号:51

    ISSN号:2352-152X

    是否译文:

    发表时间:2022-04-04

    收录刊物:SCI、EI

    发布期刊链接:https://www.sciencedirect.com/science/article/pii/S2352152X22004947


    Baidu
    map