• 其他栏目

    吴慕遥

    • 讲师
    • 教师拼音名称:wumuyao
    • 出生日期:1995-12-08
    • 入职时间:2022-12-27
    • 所在单位:车辆工程系
    • 学历:博士研究生毕业
    • 办公地点:安徽省合肥市屯溪路193号合肥工业大学格物楼515
    • 性别:男
    • 联系方式:18256580186
    • 学位:工学博士学位
    • 在职信息:在职
    • 毕业院校:中国科学技术大学
    • 学科:车辆工程
    • 2022-12-01曾获荣誉当选:博士研究生国家奖学金
    • 2022-05-30曾获荣誉当选:安徽省优秀毕业生
    • 2022-05-30曾获荣誉当选:中国科学技术大学优秀毕业生
    • 2019-12-09曾获荣誉当选:中科大-苏州工业园区奖学金

    访问量:

    开通时间:..

    最后更新时间:..

    State of charge estimation of power lithium-ion battery based on an adaptive time scale dual extend Kalman filtering

    点击次数:

    影响因子:9.4

    DOI码:10.1016/j.est.2021.102535

    发表刊物:Journal of Energy Storage

    关键字:State of charge (SOC),Power lithium-ion battery,Unsymmetrical Thevenin model,Auto-tuning multiple forgetting factors recursive least squares,Adaptive time scale dual extend Kalman filtering, Sliding window forgetting factor approximate total recursive least squares

    摘要:In this paper, we introduce the Unsymmetrical Thevenin model, an improved equivalent circuit model to obtain a more precise SOC estimation. We first propose an Auto-tuning Multiple Forgetting Factors Recursive Least Squares (AMFFRLS) for model parameter identification, then, we proposed an Adaptive Time Scale Dual Extend Kalman Filtering (ATSDEKF) to update the model parameters and Sliding Window Forgetting Factor Approximate Total Recursive Least Squares (SWFFATRLS) to update the maximum available capacity of a lithium-ion battery to obtain more accurate state of charge (SOC) estimation. Numerical experiments demonstrate that the proposed method can get better SOC estimation results compare to the traditional ones. Except for extreme temperatures, such as at 0 ℃, the root mean square error (RMSE) of the Unsymmetrical Thevenin model is below 1.2%, which is much smaller than the most common Thevenin model with fixed parameters based on Extend Kalman Filtering (EKF).

    备注:中科院2区Top

    合写作者:Linlin Qin,Gang Wu

    第一作者:Muyao Wu

    论文类型:期刊论文

    论文编号:102535

    学科门类:工学

    文献类型:J

    卷号:39

    ISSN号:2352-152X

    是否译文:

    发表时间:2021-05-02

    收录刊物:SCI、EI

    发布期刊链接:https://www.sciencedirect.com/science/article/pii/S2352152X21002814


    Baidu
    map